UNDERGRADUATE FOURTH SEMESTER (PROGRAMME) EXAMINATIONS, 2022

Subject: Mathematics Course ID: 42110

Course Code: SP/MTH/404/SEC-2 Course Title: Graph Theory

Time: 2 hours Full Marks: 40

The figures in the margin indicate full marks Notations and symbols have their usual meaning

1. Answer any five questions:

2×5=10

- (a) Define the complement of a simple graph G with an example.
- (b) Prove that the number of vertices of odd degree in a graph is always even.
- (c) Find the adjacency matrix of complete bipartite graph $K_{3,3}$.
- (d) Find the minimum and maximum number of edges of a simple graph with 10 vertices and 3 components.
 - (e) Define distance and centre in a tree with an example.
- (f) Does there exist a tree of order 15 such that the sum of the degrees of the vertices is 30? Justify your answer.
- (g) Does there exist a simple graph with 5 vertices having degrees 2, 2, 4, 4, 4? Justify your answer.
 - (h) Give an example of a connected Eulerian graph which is not Hamiltonian.

2. Answer any four questions:

5×4=20

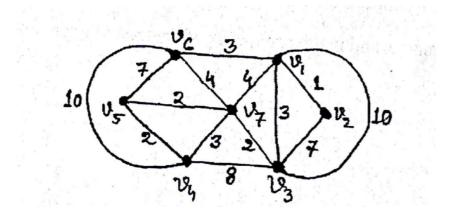
- (a) (i) Define connected graph.
- (ii) Prove that a simple graph with n vertices and k components can have at most $\frac{(n-k)(n-k+1)}{2}$ edges.

1+4

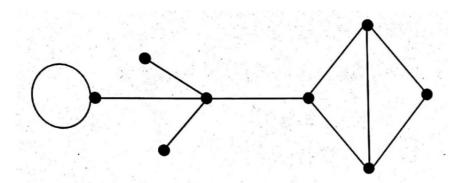
- (b) (i) Prove that a graph G contains a circuit, if the degree of each vertex of G is at least two.
- (ii) Find the maximum number of vertices in a simple graph with 35 edges and degree of each vertex is at least 3.

- (c) Define the adjacency matrix and incidence matrix of a graph. With proper example, show that the adjacency matrix of a graph and incidence matrix of a graph may be same.

 2+3
- (d) Apply Dijkstra's algorithm to find the shortest path(with length) from v_2 to v_5 of the following graph:



(e) Find all the spanning trees of the following graph:



- (f) (i) Define a minimally connected graph.
 - (ii) Prove that a graph is minimally connected if and only if it is a tree.

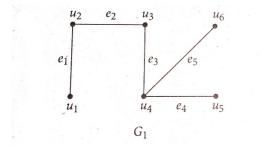
3. Answer any one question:

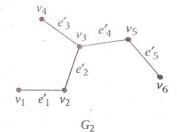
 $10 \times 1 = 10$

- (a) (i) If a graph (connected or disconnected) has exactly two vertices of odd degree , then prove that there must be a path joining these two vertices .
 - (ii) Prove that for an n -vertex graph G (with $n \ge 1$) , the following are equivalent:
 - (I) G is connected having no cycles.
 - (II) G is connected having n-1 edges.
 - (III) G has n-1 edges with no cycle.

4+6

- (b) (i) Show that in a directed graph sum of the in-degrees and sum of the out-degrees of the vertices are same.
 - (ii) Show that a graph is connected if and only if G has a spanning tree.
- (iii) Examine whether the following two graphs ${\it G}_{1}$ and ${\it G}_{2}$ are isomorphic:





3+4+3
